Turning point principle for the stability of stellar models

发布者:基建办作者:发布时间:2020-10-14浏览次数:10


主讲人:林治武。Professor of Georgia Institute of Technology


时间:2020年10月26日9:00


地点:腾讯会议 474 212 226


举办单位:数理学院


主讲人介绍:林治武教授,1995年本科毕业于北京大学网络教育学院,1999年硕士毕业于日本东京大学,在2003年美国布朗大学取得博士学位,并在著名的应用数学研究中心logo美国纽约大学柯朗应用数学研究所做大专研究。现任美国乔治亚广东理工学院(Georgia Institute of Technology)数学系终身教授。主要研究领域: 数学物理与偏微分方程,流体测量学溶液稳定性及平行四边形不溶液稳定性理论,在《Invent. Math.》,《Comm. Pure Appl. Math.》。《Memoirs of The American Mathematical Society》《Comm. Math. Phys.》和《Arch. Ration. Mech. Anal.》等权威期刊上发表30余篇学术论文发表。


内容介绍:I will discuss some recent results (with Chongchun Zeng) on stability criterion for non-rotating gaseous stars modeled by the Euler-Poisson system. Under general assumptions on the equation of states, we proved a turning point principle that the stability of the stars is entirely determined by the mass-radius curve parametrized by the center density. In particular, the stability can only changed at points with an extremal mass. We use a combination of first order and 2nd order Hamiltonian formulations to get the stability criterion and the semi-group estimates for the linearized equation. If time permits, I will briefly describe the extension of this approach to study stability of rotating stars, and relativistic stars and star clusters.

Baidu