Stability and Hopf bifurcation for a delayed predator–prey model with stage structure for prey and Ivlev-type functional response

未知发布者:基建办作者:发布时间:2020-10-14浏览次数:10


主讲人:白玉真  曲阜师范大学教授


时间:2020年10月26日16:00


地点:腾讯会议 413 651 673


举办单位:数理学院


主讲人介绍:白玉真, 曲阜师范大学教授。2002年于华东师范大学获理学博士学位, 2004年南京大学图书馆大专出站。研究方向为微分方程与动力系统。主持完成国家杰出青年科学基金1项和副科级项目3项,在校内外龙源期刊网发表SCI论文30余篇。2014年获得山东省会计信息网省级小学教学改革成果金奖(第一完成人合作关系说明)。


内容介绍:In this paper, we mainly investigate a delayed predator–prey model with stage structure for prey and Ivlev-type functional response.  The stability of equilibria and existence of Hopf bifurcation are studied by discussing the different cases of time delays for the model. Meanwhile, we derive explicit formulae to determine the properties of Hopf bifurcation such as the direction of  Hopf  bifurcation and the stability of periodic solutions. Numerical simulations of all theoretical analyses are given for verifying our theoretical results. These results may be helpful  to further understand the role of the critical values of time delays in stabilizing the predator–prey model.

Baidu